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Harmonizing sound and light: X-ray imaging
unveils acoustic signatures of stochastic
inter-regime instabilities during laser
melting

Milad Hamidi Nasab 1 , Giulio Masinelli 2 , Charlotte de Formanoir1,
Lucas Schlenger1, Steven Van Petegem 3 , Reza Esmaeilzadeh1,
Kilian Wasmer 2, Ashish Ganvir4, Antti Salminen 4, Florian Aymanns 5,
Federica Marone 6, Vigneashwara Pandiyan 2, Sneha Goel 3 &
Roland E. Logé 1

Laser powder bed fusion (LPBF) is a metal additive manufacturing technique
involving complex interplays between vapor, liquid, and solid phases. Despite
LPBF’s advantageous capabilities compared to conventional manufacturing
methods, the underlying physical phenomena can result in inter-regime
instabilities followed by transitions between conduction and keyhole melting
regimes — leading to defects. We investigate these issues through operando
synchrotron X-ray imaging synchronized with acoustic emission recording,
during the remelting processes of LPBF-produced thin walls, monitoring
regime changes occurring under constant laser processing parameters. The
collected data show an increment in acoustic signal amplitude when switching
from conduction to keyhole regime, which we correlate to changes in laser
absorptivity. Moreover, a full correlation between X-ray imaging and the
acoustic signals permits the design of a simple filtering algorithm to predict
the melting regimes. As a result, conduction, stable keyhole, and unstable
keyhole regimes are identified with a time resolution of 100 µs, even under
rapid transitions, providing a straightforward method to accurately detect
undesired processing regimes without the use of artificial intelligence.

Laser powder bed fusion additive manufacturing (LPBF AM), currently
the most widely adopted metal additive manufacturing process, is a
technology capable of directly producing intricate three-dimensional
metallic components from digital Computer-Aided Design (CAD)

models. Specifically, a conventional LPBF process utilizes a high-
power-density laser to scan 2D patterns over a flat bed of microscopic
(~15–100 µm)metal powder, creatingmelt pools in the order of 100 µm
wide in each successive layer of powder to manufacture a desired 3D
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solid part1. However, despite LPBF’s unparalleled capabilities—such as
the ability to produce complex geometries, custom parts, and open-
cell structures (3D lattices)with limitedmaterial waste in themetal-AM
domain—it suffers from several limitations that endanger its wide-
spread adoption in demanding industrial sectors (i.e., aerospace,
automobile, and medical). These limitations emerge from uncommon
thermal history and rapid solidification, along with defects randomly
introduced during the process resulting in a lack of repeatability and
robustness. Additionally, the complex interactions between the high-
power-density laser source and the powder bed bring about entangled
interdependencies between the considerable number of process
parameters, whose effects are not yet fully comprehended. Further-
more, significant melt pool geometry variations are observed even
under constant process parameters, revealing problematic in-process
instabilities. These variations can take place due to several factors: (i)
the effect of scanning strategy and corresponding heat build-up in
intra-layer laser scan2,3; (ii) the acceleration and deceleration at the
beginning and the end of the laser track, resulting in an increased laser
dwell time and uncontrolled localized energy density4; (iii) the pre-
sence of geometrical features (e.g., overhangs and walls) diminishing
the heat sink effect5,6; and (iv) the dependency of laser absorptivity on
the angle of incidence and the resultant non-uniform laser absorption
(Fresnel absorption) and temperature distribution alongside the
scanning vector7. Moreover, in the event of large melt pool geometry
variations, inter-melting regime instabilities might occur, with occa-
sional or regular transitions between conduction and keyhole
regimes6.

In recent years, the mentioned process instabilities started to be
investigated thanks to the emergence of high-speed synchrotron X-ray
imaging, bringing specific attention to the keyhole melting mode,
recognized as one of the main responsible phenomena in the forma-
tion of a ubiquitous porosity7–9. This regime is the product of excessive
energy density beyond a criterion10,11, bringing about rapid evapora-
tion of the molten metal in the laser-material interaction zone and the
formation of recoil pressure. The intense recoil pressure pushes the
surrounding liquid metal downwards by overcoming the surface ten-
sion of the molten metal, generating a profound and high aspect-ratio
cavity called a keyhole12. Upon the formation of this narrow cavity, the
keyhole becomes a gray body due to a dramatic increase in laser
absorption via multiple reflections on its walls, further contributing to
its energy absorption efficiency13,14. Furthermore, intertangled com-
plex thermo-mechanical interactions such as thermocapillary force,
Marangoni convection, recoil pressure, and gas plasma call forth
keyhole instabilities15–17, subjecting keyhole to axial fluctuations and
radial perturbations7,11,12,18, significantly increasing the chance of key-
hole collapse and the entrapment of gas bubbles in the melt4,8,19. Upon
solidification, these bubblesmight get pinned and formporosity in the
final consolidated part, acting as stress raisers, becoming detrimental
to fatigue20 and other mechanical properties of parts21,22.

Consequently, the stochastic inter-regime instabilities can result
in the formation of undesired defects and significant alterations in
local thermal history and melt pool geometry, partaking into the
microstructural inhomogeneity of the part. Nonetheless, LPBF must
yield products with predictable mechanical properties to ensure its
ubiquitous implementation in strategic industries. Therefore, the
widespread application of real-time/in situ quality monitoring techni-
ques becomes paramount to improving the reliability of the LPBF
process. In the past 10 years, various sensors (e.g., optical (photo-
diodes and pyrometers), vision (high-speed and thermal imaging), and
acoustic emission (AE)) have been implemented into the LPBF process
for this aim23,24. The principal advantage of in situ monitoring techni-
ques over post-mortem approaches is that upon detection of unde-
sirable events, the process can be stopped, and appropriate healing
measures via re-melting of the top layer can be taken, removing the
defects and saving resources25,26. However, most of the in-situ

monitoring techniques provide information limited to the top surface
region of the process zone, coming short on the complex phenomena
taking place at the bottom of the depression zone27. Complementary
to these approaches, AE, as a low-cost and robust monitoring techni-
que, might be up to the task—as it can provide information relevant to
melt-pool dynamics and its volumetric behavior27–29. During the LPBF
process, a significant amount of noise is generated, which can be uti-
lized as an in situ feedback signal29–31. In the context of laser welding,
acoustic waves can originate from three primary sources: (1) acoustic
waves induced within the substrate through phase transformation
phenomena, including solid-state, solid/liquid, and liquid/gas
transformations32,33, (2) thermal stress-induced acoustic waves in the
laser-material interaction zone; and (3) acoustic waves resulting from
variations in gas momentum due to heating, boiling processes, and
subsequent changes in gas pressure33,34. The latter can occur due to
various phenomena in the laser-material interaction zone, such as
metal vaporization, formation and expansion of a microjet at the
bottom of the keyhole, pressure variation caused by surface tension
gradient around the keyhole opening due to thermal deformation34,
the collision of liquid with the keyhole rear wall due to a drop in vapor
pressure in the lower part of the cavity, collapse of liquid against the
melt pool boundaries, penetration of themicrojet into themelt and its
impact on the surface of formed keyhole porosities, pore collapse, and
subsequent rebound, and periodic over-heating induced explosion at
the bottom of the keyhole after its collapse8,35–38. Collectively, these
events can contribute to the periodic oscillation of the keyholewithin a
reported frequency range of 20–50 kHz39.

Attempted works on the use of AE in the LPBF process mainly
concentrated on the classification of process regimes27,40 or specimen
quality41–43 by applying machine learning (ML) algorithms to acoustic
signals processed by Fourier or wavelet transforms. These works
investigated the effect of different sets of process parameters on the
melting regime, the corresponding acoustic signal, and the quality of
thefinalpart in termsof porosity. A limitation, however, is that artificial
intelligence (AI) approaches can result in a model that learns to detect
changes in the process parameters rather than the process regime and
defect formation35,43. For instance, a recent work focused on the
detection of keyhole porosities via synchronization of the acoustic
signal with the position of the laser at each instance in time, enabling
the ground truth labelingof defect locations44. AnMLalgorithmwas, in
this case, employed to detect the porosity formation based on statis-
tical features extracted from the partitioned acoustic data. However,
there was no thorough investigation of the melting regime and no
inquiry into whether the algorithm detects the ever-existing effect of
process parameters or the actual formation of defects. According to
these reports, acoustic emissions in the range of 10–40 kHz carry
significant information on the keyhole regime40,44, in-line with the
oscillation frequencies reported from operando X-ray imaging of the
LPBF process39. Identifying single events of defect formation or regime
changes under constant process parameters can shed light on the
acoustic signatures of these events and lead theway to develop amore
robust AE-based monitoring approach—an approach that has not yet
been addressed in the literature. A combination of operando high-
speed X-ray imaging and implementation of synchronized in situ
acoustic measurements could reveal the critical relationship between
the physical events and the corresponding acoustic signal frequency
contents, shedding light on previously unexplored insights.

In this work, we aim to delve deeper into the LPBF process by
focusing on the identification of individual events of defect formation
and regime changes, particularly under constant process parameters.
This approach seeks to uncover specific acoustic signatures associated
with these events, enhancing the robustness of AE-basedmonitoring—
an aspect that has received limited attention in the existing literature.
In our methodology, we introduce the simultaneous synchronized use
of operando high-speed X-ray imaging and in-situ acoustic
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measurements. Specifically, we observe inter-regime instabilities in
LPBF fabricated structures under constant process parameters and
conditions using operando high-speed transmission X-ray imaging.
Concurrently, integrating an optical microphone into the LPBF build-
ing chamber allows us to capture in-situ airborne acoustic emission
signals during the process. This strategy enables us to reveal the cri-
tical relationship between physical events and their corresponding
acoustic signal frequency contents. Distinct from traditional machine
learning classification models27, our work adopts a segmentation-
based approach that enables continuous, probabilistic assessment of
the melting regime throughout the process, not just a discrete classi-
fication. Our contribution lies in the introduction of a data-driven fil-
tering pipeline that effectively segments the acoustic emission signals
into corresponding regimes, utilizing the X-ray imagingdata as ground
truth. This technique, although data-driven, differs fundamentally
from typical machine learning or artificial intelligence algorithms.
While the latter often relies on extensive training with a wide range of
data, and its performance can be hindered by changes in the data
distribution or highly correlated features, our method is designed to
be robust under constant process parameters, with an emphasis on
identifying the correlation between individual physical events and
their acoustic signatures. The data-driven filtering pipeline is tailored
to cope with the complex and high-dimensional LPBF process by
leveraging the X-ray imaging data, which provides an explicit physical
interpretation to guide the segmentation. Therefore, we believe this
approach is more immune to the challenges many machine learning
methods face when differentiating between highly correlated sig-
natures from complex physical systems such as LPBF. Moreover, an
essential advantage of our approach is the simplicity of the filtering
pipeline, which enables a physically-backed interpretation of the
results. This straightforwardnesspaves theway for the development of
robust acoustic emission-based in-situ monitoring systems capable of
accurately capturing stochastic regime instabilities and porosity
formation.

Results
Operando observation of the thermo-mechanical instabilities
Operando X-ray imaging was utilized to shed light on the short-term
regime instabilities that are specific to the laser melting process
through the implementation of the mini-LPBF apparatus capable of
mimicking it, as described in the “Methods” section. Thin walls were
fabricated via themini-LPBF device in keyhole printing conditions with
a Gaussian beam at the focal point, focused on top of the powder bed
with ameasured beamdiameter of 27.5 µmat 1=e2. A nominal power of
180W, a scanning speed of 280mm/s with a hatch distance (5 uni-
directional line scans) and layer thickness of 40 and 30 µm were
selected respectively (c.f. Supplementary Table 1). The laser was
operated in a pulsed mode with a repetition rate of 250kHz and a
nominal temporal pulse length of 2 µs. The printing result is a wall with
a height range of 640–750 µm, a thickness of about 250 µm and a
length of 5mm in the as-built condition (see Fig. 1). The fabrication of
the walls in the keyhole regime brings about a large cloud of keyhole
porosities distributed randomly in the bulk. Furthermore, scanning
lines closer to the side edges of thewall induces the formationof larger

melt pools due to excessive feedofmetal particles as a consequence of
capillary forces45, and hence, in higher heights at the longitudinal
borders of the wall (see Fig. 1). A number of these metal particles
remain only semi-attached to the top and side surfaces of the wall
generating further stochastic geometrical inaccuracies to the wall
geometry46. For the experiments, laser re-scanning of the top surface
of thewall was done after top flat grinding of thewall by the same laser
defocused to a factor of two or more in diameter, with increased
nominal power and substantially reduced laser scanning speed (c.f.
Supplementary Table 1). Several laser re-scanning operations were
performed on each wall, modifying the wall topography, and resulting
in different height values for each consecutive track. A non-uniform
heat dissipation alongside the wall is generated as a result of keyhole
porosities and geometrical unwanted features. Furthermore, the
height variations along the wall introduce changes in the laser focus
and the projected intensity profile on the top surface of thewall. These
height variations, along with the residual waviness left by previous
laser remelting, also contribute to variations in the laser incident angle
and absorptivity along the track. Besides, utilization of pulsed mode
laser could yield an increase in absorption probability, favoring con-
tingency of regime transitions in laser remelting passes47.

We effectively provoked the regime instability phenomenon
under constant sets of process parameters, selecting a combination of
parameters resulting in near-transition conduction conditions utilizing
the state-of-the-art scaling laws11. Apart from the selection of the pro-
cess parameters, we employed several diverging and converging laser
beams on the (to bemelted) wall surface, further away or closer to the
focusing lens, respectively. Due to a small misalignment of the laser
beam through the optics, a deviation of the Gaussian beam profile
occurred (c.f. Supplementary Fig. 1), strongly visible in the divergent
part of the beam. Nevertheless, we could always adjust the nominal
laser power and scanning speed to obtain transitions between inter-
esting melting regimes. We observed the occurrence of regime
instabilities from conduction to stable and from stable to unstable
keyhole under constant laser process parameters in single- and
double-line scans. The instabilities could last from hundreds of
microseconds up to tens of milliseconds. The operando X-ray imaging
indicated that the regime instabilities might be a common phenom-
enon in individual scan lines, in regions initially believed to be steady
state4, i.e., far from the beginning and the end of the scanning vector.

The stable keyhole and unstable keyhole were distinguished
based on observable characteristics in the X-ray images. A stable key-
hole is characterized by a continuous, well-defined shape and the
absence of significant fluctuations or instabilities. On the other hand,
an unstable keyhole exhibits periodic collapse and the formation of
porosities. These instabilities are visible as changes in the keyhole
shape, such as irregular boundaries, fluctuating depths, and the pre-
sence of porosity formations. To determine the transition from stable
to unstable keyhole, we focused on the first appearance of porosity
resulting from a keyhole collapse. The appearance of porosities indi-
cates the onset of instability in the keyhole, marking the transition to
an unstable regime. Conversely, the stable keyhole regime is identified
when the generation of porosities ceases and the keyhole remains
relatively stable without significant fluctuations. It is worth noting that

Fig. 1 | An X-ray image of a thin 316 L stainless steel wall fabricated via themini-
LPBF device in as-built condition. Multiple as-built surface profiles are high-
lighted with colored dashed lines. Lighter regions correspond to the presence of
lessmaterial (lower thickness). A few of the partially attachedmetal powders to the

top and side surfaces are encircled with green dashed lines. Some examples of
keyhole porosities accumulated from the building process are encircledwith white
dashed lines. The full height of the wall is not presented in this image.
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the time resolution of one X-ray frame (100 µs) introduces a potential
uncertainty when precisely indexing the stable and unstable keyhole
regimes. This uncertainty is associated with the duration of one X-ray
frame and may affect the exact determination of the transition
between these regimes.

Figure 2 exhibits the RM2 scanning condition (c.f. Supplementary
Table 1) using an out-of-focus divergence beam (1.7, c.f. Supplemen-
tary Figure 1), leading to multiple instabilities from conduction to

stable and unstable keyhole regimes. Melting starts in conduction
mode (see Fig. 2a), lasting for about 20ms, after which a short-lived
transition to stable keyhole (t = 20ms) and back to conduction
(t = 21.1ms) takes place, which is then followedby another transition to
unstable keyhole regime (t = 23.4ms). The generation and growth of
the keyhole depression bring about enhanced laser energy absorption
via the activation of multiple reflections48. Soon themelt pool starts to
grow due to the drilling effect of the laser, with the melt pool depth

Fig. 2 | Stochastic regime instabilities and subsequent transition from con-
duction to stable and unstable keyhole regimes. a RM2 melt pool morphology
variations under constant laser process parameters in a single scanning vector of
316L stainless steel (c.f. Supplementary Movie 2). The normalized and filtered
acoustic signal for each time frame is illustrated for each image set with event
annotations represented by vertical lines. The boundaries of solid-liquid (melt
pool) and gas–liquid (depression zone) are illustrated by yellow and white dashed
lines, respectively. The time bar depicts the regime changes from conduction to
stable keyhole (Ev1, t = 20ms), stable keyhole back to conduction (t = 21.1ms),
conduction to unstable keyhole (Ev2, t = 23.4ms), and unstable keyhole back to
conduction (Ev3, t = 41.2ms). The resultant pores in the unstable keyhole regime in

the vicinity of each timeline are encircledbydashed green lines. The scalebar for all
the images is shown in the bottom right corner. The laser intensity profile (1.7, c.f.
Supplementary Fig. 1) and the corresponding scanning direction are presented in
the top right corner. b Melt pool length, depth, keyhole depth, and widths at the
top of the depression throughout the scanning vector. c The normalized magni-
tude of melt pool length and depth over the scanning vector. d The first derivative
of themelt pool length and depthmagnitude over time. e Relations betweenmean
keyhole wall angle and the number of laser reflections and total energy absorption.
f Superimposition of total energy absorption evolution and the normalized and
filtered acoustic signal (band-pass: 35–105 kHz). g Melt pool rear wall velocity
measured via summation of laser velocity and melt pool length variations in time.
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reaching its maximum (dm = 180 µm) at t = 29.4ms (see Fig. 2b, c). At
this point, the very fast regime transition, and the overheating at the
bottom of the keyhole depression lead to an increase in the tem-
perature gradient between the center of the depression and the
boundaries of the melt pool, resulting in a pronounced Marangoni
convection, evacuating, and redistributing the heat in the melt pool15.
This is followedby shrinkage in themelt pool depth dm, while its length
lm continues to grow as a consequence of heat redistribution by Mar-
angoni convection. The projected melt pool area was measured to be
quite stable between t = 29.4ms (where dm starts to decline) and
t = 38.6ms (where lm is at its maximum value), indicating the redis-
tribution of heat in the melt pool to be the sole responsible for these
changes. Additionally, weobserved the formation of smaller porosities
at both ends of the unstable keyhole regime duration (t = 24.7ms and
t = 39.9ms) and larger pores in the middle of the track as a result of
pore coalescence. This could be attributed to the coalescence of the
smaller pores as their quantity increases at the beginning of the
unstable keyhole regime.Meanwhile, at the final stages of the unstable
keyhole, due to the drop in the absorbed energy and the following
Marangoni convection magnitude, the melt flow dynamics decay
resulting in a lower probability for the coalescence of smaller pores7.

We used a simple welding analytical model describing the deep
penetration of the laser, and considering the keyhole geometrical
profile49 to estimate the number of multiple reflections inside the
keyhole cavity. This approach provides a first-order estimate of the
time-resolved total energy absorption in the presence of a depression
cavity. The number of reflections is estimated via nmr =π=4

�θw, where,
�θw is the mean keyhole wall angle, considering a limiting reflection
angle of π=2. Subsequently, the total laser absorption including the
first reflection is calculated usingαtot = 1� 1� αFr

� � � ð1� αmrÞ, where,
αFr is the Fresnel absorptivity and αmr is the absorption coefficient for
multiple reflections (for the detailedmathematical procedure, refer to
Supplementary Method 1). Due to the complexity of the fluctuating
keyholewallmorphology as a result of its exposure to ahigh-frequency
pulsed laser beam,with polarizing reflectivity on a three-dimensionally
curved surface, a more complete and accurate assessment of the
absorptivity inside the cavity is not attempted. The simplemodeling of
absorptivity in the keyhole, solely based on the geometrical factor, is
used here only as an indication on the cameacross correlationwith the
acoustic power (see Fig. 2e, f). A gradual change within the keyhole
depression profile was observed at t = 35.6ms, where the depression
zone width wd grows and its depth dd decays, leading to a drop in the
number of multiple reflections, and consequently in the total energy
absorption. At this point both dm and lm decay until the transition to
the conduction regime takes place. At that moment (Fig. 2b —Ev3,
t = 41.2ms), the reduced total energy absorption in the laser-material
interaction zone48 cannot provide the heat required to sustain the
inherited melt volume, resulting in an increase in the velocity of the
rear solid–liquid interface by a factor of two compared to the scanning
velocity (speed of the front-end of the melt pool) (see Fig. 2d). This
results in an accelerated speed in the movement of the solid/liquid
boundary (R,m/s) at the rear part of themelt pool (Fig. 2g), and hence,
in an increase of the cooling rate G ·R (K/s), where G (K/m) is the
representative temperature gradient50. Accordingly, it can be said that
the microstructural footprint corresponding to these regime instabil-
ities can linger around after the disappearance of the unwanted
instabilities. Due to the abrupt decrease in the amount of absorbed
energy, the temperature gradient of the molten metal in the region
close to the incident laser light and the melt pool boundaries drops
rapidly. Consequently, a change in the dictating heat exchange
mechanism from convection to conduction takes place51, at distances
close to the solid–liquidboundary, leading to a transition fromkeyhole
to conduction regime.

The unstable keyhole was primarily attributed to the enhanced
energy absorption via multiple laser reflections (up to nmr = 4),

resulting in an estimated increase in total absorptivity as high as 0.85,
more than twice the Fresnel absorption (αFr =0.4, at an incident angle
of π=2) for 316 L stainless steel (see Fig. 2e)7. The variations in total
laser absorption correlated well with the lm decay taking place at
t = 35ms and the drop in the AE signal amplitude (see Fig. 2f, g), sug-
gesting the evaporation and formation of microjet as the principal
factor in the generation of acoustic waves in keyhole melting regime8.
This finding is in agreement with previous suggestions on the origin of
acoustic waves in keyhole regime8,39.

Figure 3 depicts the regime instabilities occurring under constant
laser process parameters utilizing a convergent laser beam (−1.9, c.f.
Supplementary Fig. 1) with a similar defocus distance as the divergent
beam used in RM2 but having a dissimilar laser intensity distribution.
RM6 (c.f. Supplementary Table 1) exhibited a continuous heat build-up
in the laser-material interaction zone ensuing in a smooth transition
from conduction to stable keyhole (Ev1, t = 45.7ms) and eventually to
unstable keyhole (Ev2, t = 49.7ms). Ev1 is the onset of keyhole
depression fluctuation and gradual growth (see Fig. 3a–c), with a melt
pool expansion characterized by a depth growth velocity twice that of
the melt pool length. At t = 49.6–49.7ms, the fluctuation leads to a
very sharp keyhole whose collapse results in the formation of porosity
(t = 49.8ms), followed by a new-born keyhole (t = 50.1ms) and its
transition to a needle-like keyhole (t = 50.3ms) which, upon its growth
and collapse leaves behind another porosity. This observation is in
agreement with the keyhole porosity formation mechanism proposed
in recent reports8,39. It has been demonstrated that the dynamic mor-
phology of the front keyhole wall (FKW) brings about non-uniform
laser absorption depending on the angle of incidence. In some occa-
sions, these morphological features can shadow the bottom of the
depression which could result in temperature and pressure drop fol-
lowedby the collapse of the keyhole. The formedporositymay then go
through pore migration under Marangoni-driven flow and potential
pore coalescence52,53 (see Fig. 3a, t = 78.0ms). Furthermore, due to the
very slow transition from conduction to stable and unstable keyhole
regimes, no abrupt change in the velocity of the rearwallwas observed
(see Figs. 2g and 3g).

RM2 and RM6 (c.f. Supplementary Method 2) measurements
were performed with similar beam sizes having an opposite defo-
cusing position (positive and negative as divergent and convergent
beams, respectively) and different laser intensity distributions. In
conduction mode, the melt pool dimensions proved to be similar
under identical laser processing parameters with a slight increase in
melt pool depth and length in positive defocus, in agreement with
previous observations54,55. Upon transition from conduction to key-
hole, a significant difference in the melt pool length is observed with
45% higher values in RM2 compared to RM6. These melt pool length
variations correspond directly to the local cooling rate upon solidi-
fication, leading to variations in the size ofmicrostructural features56.
At this stage, the defocus direction-dependent drilling effect and
enhanced energy absorption becomes evident. As observed in Sup-
plementary Figure 1, the convergent beam (negative defocus) pos-
sesses 28% higher energy densities in the very center of the beam as
opposed to the divergent beam (positive defocus). Furthermore, the
convergent beam generated a semi-conical shape depression zone
(see Fig. 3a) with a quite wide entry on top and a very narrow keyhole
bottom as a result of its laser energy intensity distribution and its
converging inside thematerial, while, the divergent beamproduced a
narrow and deep cavity with slight variations in the depression width
alongside the depth of the keyhole (see Fig. 2a). These observations
were in accordance with the laser intensity profiles, with a con-
centrated intensity at the very center of the beam in the convergent
beam and a more spread non-uniform energy distribution in the
divergent beam (c.f. Supplementary Fig. 1f). Consequently, due to the
lower aspect ratio, the number of lasermultiple reflectionsdecreased
remarkably in the negative defocus, yielding lower total laser energy

Article https://doi.org/10.1038/s41467-023-43371-3

Nature Communications |         (2023) 14:8008 5
Content courtesy of Springer Nature, terms of use apply. Rights reserved



absorption, almost by a factor of two. This observation was in good
correlation with the difference in melt pool dimensions between the
two RM2 and RM6 cases with distinct total laser absorption. The
onset of a sharp increase in the AE signal was very well correlated to
the formation of the depression zone while transitioning from con-
duction to keyhole, suggesting the evaporation and the formation of
the metallic jet as principal actors in the generated acoustic signal
while in keyhole melting mode. These observations were consistent
through all experiments across different laser beams, defocus
directions and nominal laser power/velocity combinations (c.f.

Supplementary Figs. 5–8 and the corresponding Supplementary
Movies 1, 3, 4, and 6, respectively). Supplementary Figure 8 corre-
sponds to two consecutive remelting passes, where the end of each
laser scan was detectable via the acoustic signal. Furthermore, the
effect of heat build-up as a result of the first scan is observed at the
beginning of the second pass. In general, the conduction regime
corresponded to AE amplitudes two orders of magnitude lower than
those in the unstable keyhole regime. Generally, we observed an
amplitude difference by an average factor of two between stable and
unstable keyholes.

Fig. 3 | Stochastic regime instabilities and subsequent transition from con-
duction to stable and unstable keyhole regimes. a RM6 melt pool morphology
variations under constant laser process parameters in a single scanning vector of
316 L stainless steel (c.f. Supplementary Movie 5). The normalized and filtered
acoustic signal for each time frame is illustrated for each image set with event
annotations represented by vertical lines. The boundaries of solid–liquid (melt
pool) and gas–liquid (depression zone) are illustrated by yellow and white dashed
lines, respectively. The time bar depicts the regime changes from conduction to
stable keyhole (Ev1, t = 45.7ms) and stable keyhole to unstable keyhole (Ev2,
t = 49.7ms). The resultant porosities in the unstable keyhole regime in the vicinity
of each timeline are encircledbydashedgreen lines. The scale bar for all the images

is shown in the top right corner. The laser intensity profile (−1.9, c.f. Supplementary
Fig. 1) and the corresponding scanning direction are presented in the bottom right
corner. b Melt pool length (lm), depth (dm), keyhole depth (dd), and width (wd) at
the top of the depression throughout the scanning vector. c The normalized
magnitude of melt pool length and depth over the scanning vector. d The first
derivative of the melt pool length and depth magnitude over time. e Relations
between mean keyhole wall angle the number of reflections, and total energy
absorption. f Superimposition of total energy absorption evolution and the nor-
malized and filtered acoustic signal (band pass: 35–105 kHz). g Melt pool rear wall
velocity measured via summation of laser velocity and melt pool length variations
in time.
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Segmentation results
In this study, we introduce an approach for the segmentation of AE
signals in conduction, stable, and unstable keyhole regimes. The aim
is to precisely identify and divide the segments, or signal portions,
corresponding to each of these regimes. To evaluate the ability to
accomplish this objective, we employed a leave-one-out cross-
validation evaluation scheme. This approach enables efficient use of
the available data and provides significant predictions for each sig-
nal, allowing us to robustly and accurately evaluate the
performance57. Specifically, the used optimization procedure,
detailed in Supplementary Method 3, is reinitiated as many times as
the number of available signals. Every time the optimization pro-
cedure is restarted, we exclude one of the available signals from the
parameter update, which includes the gradient computations of the
cumulative risk over the remaining signals. This methodology allows
for a robust and accurate evaluation of the performance of the
excluded signal.

In order to evaluate the quality of the segmentation obtained by
the algorithm, we employed the F1-score metric. This measure, com-
monly used in machine learning and information retrieval, provides a
comprehensive evaluation of the algorithm’s performance by con-
sidering both precision and recall and is calculated as the harmonic
mean of these two metrics. To be specific, precision is defined as the
proportion of correctly predicted positive instances or data points
predicted as belonging to the correct regime, out of all data points
predicted as belonging to that specific regime. On the other hand,
recall is the proportion of correctly predicted positive instances out of
all actual data points in that regime. This metric assesses the algo-
rithm’s performance in terms of its ability to correctly identify seg-
ments and predict their belonging to a specific regime.

The results of this study are presented in Table 1, where several
quality metrics per regime are reported using the leave-one-out cross-
validation evaluation scheme for all available signals for both ternary
(conduction, stable, and unstable keyholes) and binary (conduction
and keyhole) segmentation problems. As can be seen, the algorithm
segments all signals correctly, particularly for the conduction regime
(for both binary and ternary problems), keyhole (for the binary case),
and unstable keyhole (for the ternary scenario)—allowing for the
detectionof unwantedporosities or defects in themanufacturedparts.

More specifically, if we analyze the quality metrics per regime, we
can see that in both cases (binary and ternary), all figures of merit are
very high (>95%) for the conduction regime. The ease of conduction
detection can be attributed to the segments identified in the X-ray
movies as corresponding to the conduction regime, which present
little frequency content throughout the acquisition band
(10Hz–1MHz) and correspondingly low signal amplitude.

This consideration also makes keyhole detection in the binary
case a straightforward problem by exclusion. However, the same
cannot be said for the ternary problem, particularly for stable and
unstable keyhole detection. In this situation, as seen from Table 1,
being able to discriminate between stable and unstable keyhole is a

challenging task, as the F1-scoredrops to about 70% for stable keyhole,
whereas it stands at almost 90% for the unstable keyhole.

To investigate the causes of this behavior, we can look at the other
two available figures ofmerit in Table 1, precision and recall. For stable
keyhole, the origin of the lower F1-score is a reduced regime-specific
precision compared to recall, i.e., most segments corresponding to
stable keyhole are correctly detected as such (thus, high recall), but
not all segments recognized as stable keyhole are correct (thus, low
precision). On the other hand, the high F1-score for conduction and
unstable keyholes allows us to conclude that most errors are unstable
keyhole segments mistaken for stable keyholes—and this is confirmed
by the confusion matrix in Supplementary Fig. 9, which provides a
visual representation of the percentual number of correct and incor-
rect predictions made by the algorithm.

Additionally, Fig. 4 shows the output obtained for two of the
available signals, the algorithm predictions, and the corresponding
ground truth. The optimized filters can discern between the differ-
ent regimes by producing signals with a high value when the cor-
responding regime is occurring and a low one when the other
regimes are detected. Furthermore, most of the model errors are
located close to the regime transition instants. This is due to the fact
that the ground truth was derived from X-ray movies, which have a
lower temporal resolution compared to acoustic emission. Specifi-
cally, the X-ray movies have a sampling frequency of 10 kHz,
resulting in a time distance between frames of 0.1 ms, while acoustic
emission is sampled at 2MHz, resulting in a time resolution of 0.5 μs.
Therefore, the effective accuracy of the model is considered to be
higher than what is reported.

Moreover, Fig. 5 shows the frequency response of the filters
before and after optimization. Specifically, in both binary and ternary
cases, the frequency response of the conduction filter shows a precise
amplification of the frequency contents in the lower end of the spec-
trum and a distinct peak centered at 250 kHz—without significant dif-
ferences compared to the initial conditions (apart from the overall
reduction of the in-band attenuation). This peak at the 250kHz pulse
repetition rate may correspond to the periodic evaporation at the
surface of the melt pool provoked temporally by the laser pulse
repetition rate, taking place at the center of the laser profile, where the
laser intensity is at its maximum. However, the low-frequency content
is due to being in the conduction regime, whichmeans that due to high
reflectivity accompanied by low energy absorption and low evapora-
tion rate, the evaporation-induced recoil pressure is insufficient to
overcome the magnitude of surface tension for creating a depression
cavity15,16, and, thus, the melt pool dynamics are much slower com-
pared to the keyhole regime.

On the other hand, for the binary case, the keyhole filter is
significantly changed after optimization compared to its initial
conditions—showing the amplification of the energy content limited
to the frequency band 40–80 kHz and around two higher frequency
peaks, centered at 250 and 500 kHz, respectively. These two higher
spectral peaks correspond to the fundamental and second harmonic

Table 1 | Per-regime quality metrics obtained through a leave-one-out cross-validation evaluation scheme for all available
signals

Ternary Binary

Metric Conduction [%] Stable keyhole [%] Unstable keyhole [%] Conduction [%] Keyhole [%]

Global F1-score 97.04 69.90 89.83 95.89 98.34

Global Precision 97.39 58.32 96.81 95.44 98.53

Global Recall 96.70 87.21 83.79 96.36 98.15

The metrics shown include F1-score, precision, and recall. The F1-score, also known as the harmonic mean of precision and recall, balances the trade-off between the two and provides a
comprehensive measure of overall performance. Precision, on the other hand, measures the proportion of true positive predictions among all positive predictions, while recall measures the
proportion of true positive predictions among all actual positive instances. In addition to the per-regime metrics, the table also includes the global figures, calculated by concatenating all the
obtained predictions and evaluating them against the concatenated ground truths. These global figures provide a comprehensive overview of the overall performance of the model across all
regimes.
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of the laser pulse repetition rate—as described in Supplementary
Method 3—and may be related to the laser pulse-induced evapora-
tion at the bottom of the keyhole cavity, as formulated by58. Addi-
tionally, it is possible to recognize five spectral peaks amplified by
the filter, located at 40, 60, 70, 77, and 82 kHz, respectively. These
findings match what has been observed in59, where the signal energy
content in the 40–90 kHz frequency band is correlated to the
welding penetration depth, and 60 kHz is identified as the primary
frequency component during keyhole welding for 316 L stainless
steel and Ti6Al4V alloy.

Turning to the ternary segmentation problem, Fig. 5 illustrates
how the filter for unstable keyholes exhibits less attenuation in the
lower frequency spectrum compared to the stable keyhole filter. The
main distinction between the two filters can be observed in the
absence of the 250 and 500 kHz peaks for the unstable keyholes.
Despite this, the five previously mentioned spectral peaks are still
present in both stable and unstable keyhole filters. This is a result of
the more unpredictable dynamics of the laser-material interaction in
the unstable keyhole regime, which leads to the repetitive collapse of
the keyhole depression cavity, disrupting the periodicity of the laser
pulse-induced evaporation at the bottom of the keyhole cavity. This
disturbance can be attributed to various factors, such as variations in
the keyhole front wall morphology, which can cause shadows on the
bottom of the keyhole, leading to temperature and pressure drops in
the lower keyhole depression cavity, ultimately causing the collapse of
the keyhole8,12.

Discussion
In this study, we present a comprehensive analysis of inter-regime
instabilities and the utilization of AE for fast and accurate detection of
regime transitions during laser melting processes. To this aim, we

investigated the following transitions: from conduction to stable key-
hole and from stable to unstable keyhole regimes and vice versa—all
observed in individual line scans under different sets of constant
processing conditions. These experiments were validated throughout
a range of beam shapes and sizes, laser defocus directions and dis-
tance, and laser scanning parameters. Our findings reveal that these
instabilities result in transitions from steady conductionmeltingmode
to the stable keyhole and eventually to unstable keyhole with a
recurring collapse of the keyhole depression cavity, leaving behind a
sequence of spherical pores that are eventually pinned by the moving
solid-liquid boundary. Furthermore, the detrimental effects of these
unwanted transitions are not limited to the formation of porosities but
include also the microstructural imprint60, which lingers even after
transitioning back to conduction mode due to variations in the soli-
dification velocity at the solid–liquid interface.

To detect the abovementioned instabilities, we collected the AE
signals emitted from the remelting experiments of an LPBF-produced
thin wall and successfully correlated them to the corresponding
regime transitions determined by the operando X-ray imaging data,
resulting in a segmentation technique for regime prediction with
accurate time resolution. Notably, the acoustic footprint of these
instabilities showed not to be affected by changes in beam and laser
scanning parameters; hence, they could be identified as universal
regime-related acoustic signatures for the studiedmaterial. Moreover,
the amplitude of the AE correlated well with the shape of the depres-
sion cavity49,61—suggesting that the solid-gas phase transformation in
the laser-material interaction zone and the subsequent microjet
formation8 are the principal factors responsible for higher acoustic
pressuremeasured in the keyholemode. These findings elaborated on
the factors responsible for the generation of acoustic waves in the
LPBF process.
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Fig. 4 | Time evolution of segmentation algorithm output for RM2 and RM6
signals.Timeevolutionof the output of the segmentation algorithm (after SoftMax
normalization) obtained for two signals (RM2 (a, c) and RM6 (e, g)) for both the
binary (a, e) and ternary (c, g) segmentation problems. b, d, f, h) In blue (gray), the
time evolution of the ground truth (predictions obtained) is presented. As can be

seen, the optimized filters can discern between the regimes by producing signals
with a high value when the corresponding regime is occurring and a low one when
the other regime is detected. Results from the leave-one-out cross-validation eva-
luation scheme, i.e., RM2 and RM6 were not used to optimize the filters’
parameters.
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Although theX-ray experimentswere conducted in the absence of
powder on already built thin walls via LPBF, recent studies have
reported no significant difference in keyhole depth in the presence of
powder bed8,12. As a matter of fact, the keyhole threshold in process-
parametric space only shifts marginally frombare plate to powder bed
setup8. Moreover, the regime instabilities are expected to be even
more recurrent in the presence of powder due to effects such as var-
iations in the powder bed thickness62, powder particle entrainment
and laser shadowing17, and more pronounced variations in the laser
absorption alongside the scanning line17.

This study provides an approach for detecting the stochastic
regime instabilities in the LPBFprocess via real-time/in-situmonitoring
utilizing the AE data recorded from the laser-material interaction zone.
By treating the raw AE data via a segmentation algorithm consisting of
several adaptive filtering branches, we detected regime transitions
with high accuracy. Specifically, the processing pipeline had been
designed in such a way as to be flexible enough to be tuned by
employing gradient descent using the collected data while limiting the
parameters optimization to the filters’ impulse response. Furthermore,
this architecture facilitates the interpretation of the results in terms of
filtered or amplified frequency content—enabling the identification of
six spectral peaks primarily responsible for adequate signal

segmentation. Specifically, the peaks at 40, 60, 70, 77, and 82 kHz
enable discrimination between conduction and keyhole modes, while
the laser pulse repetition frequency peak at 250kHz is essential for
discerning stable from unstable keyhole regimes. The use of a pulsed
laser in LPBF offers benefits for the detection of unstable keyholes, as
the associated erratic melting dynamics disrupt the periodicity of the
laser pulse-induced evaporation at the bottom of the keyhole cavity,
allowing for instability detection through the monitoring of acoustic
energy content in proximity to the pulse repetition frequency. This
capability is of significant importance formonitoring LPBF processing,
especially for detecting instabilities within the keyhole regime, where
porosity formation occurs. Furthermore, with high time resolution in
these predictions, the location of affected regions can be accurately
identified, and remedialmeasures can be employed to save processing
time and resources. With these findings, we cannot only improve the
efficiency of the LPBF process but also ensure the high quality of the
end product.

Methods
LPBF apparatus and X-ray imaging
The experiments were performed on LPBF printed walls fabricated
from a gas-atomized 316 L stainless steel (1.4404) powder (OC
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Fig. 5 | Filters frequency response before and after optimization for both the
binary (top box) and ternary (bottom box) segmentation problems. In the
ternary case, the top plot (c) in green illustrates the frequency response of the
conduction filter, which shows a distinct amplification of the frequency contents at
the lower end of the spectrum and at the frequency corresponding to the pulse
repetition rate (250kHz). In contrast, the center plot (d) in orange and the bottom
plot (e) in red show the frequency response of the band-pass filters for stable
keyhole and unstable keyhole, respectively. The filter for the unstable keyhole has a

lower attenuation at the lower end of the spectrum compared to the stable keyhole
filter. However, the key difference between the two is the absence of the 250kHz
peak in the unstable keyhole filter. Similarly, for the binary case (top box), the top
plot (a) in green illustrates the frequency response of the conduction filter, which
again shows a specific amplification of the frequency contents at the lower end of
the spectrum. In contrast, the bottom plot (b) in red shows the keyhole filter
compared to the initial filter.
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OerlikonCorporationAG, Switzerland) (c.f. SupplementaryMethod 4).
A miniaturized LPBF device designed at the Paul Scherrer Institute
(PSI)63 was chosen for this study. This setup mimics the commercial
LPBF process and can be incorporated into synchrotron beamlines for
in situ X-ray measurements simultaneously (c.f. Supplementary
Method 5). The apparatus is equippedwith two glassy carbonwindows
allowing the X-ray beam to access the powder bed from the rear win-
dow and the transmitted X-ray beam to reach the detector placed
outside of the chamber through the front window. A dual-mode fiber
laser (redPOWER, SPI lasers Ltd., UK) with amaximumpower of 500W
operating at a wavelength of 1070 ± 10 nm was used. The laser was
utilized in pulsed mode with a pulse frequency of 250kHz and a
nominal laser pulse duration of 2 µs.

The operando X-ray imaging experiments were carried out at the
TOmographic Microscopy and Coherent rAdiology experimenTs
(TOMCAT) beamline of the Swiss Light Source (SLS) using the LPBF
apparatus described earlier. The polychromatic X-ray spectrum, gen-
erated by the 2.9 T bendingmagnet and filtered with 5mmof Sigradur
and 200 µm of Si was utilized for the experiments providing energies
ranging between 10 and 55 keV. The peak of the energy spectrum was
around 20 keV. The X-rays were allowed to pass through the 316 L
stainless steel wallswhile the laserwas impinging perpendicularly onto
the top surface of the wall. Consequently, the propagated X-rays were
converted into visible light using a 150 µm thick LuAg:Ce scintillator
and recorded with a 4×microscope (Optique Peter, France)64, coupled
to an in-house developedGigaFRoST detector65. This detector exhibits
a 2016 × 2016 pixels CMOS imaging chip with an 11μm pixel size and
12-bit nominal dynamic range. In addition, its readout system provides
continuous and sustained data streaming up to almost 8 GB/s to a
dedicated high-performance data backend server. The imaging was
carried out with a frame rate of 10 kHz, a pixel size of 2.75 µm, and an
exposure time of 95 µs for a single X-ray image. This performance was
achieved by reducing the region of interest (ROI) to 2016 × 200 pixels,
equivalent to a field of view of 5.54 × 0.55mm2. The X-ray imaging was
triggered by a TTL signal provided by the laser control card to ensure
full synchronization between the start of the laser and X-ray
acquisition.

Image processing pipeline
The X-ray movies obtained during the laser processing were analyzed
using the ImageJ66 software package. Each image stack was examined
frame by frame, providing the ground truth for variations in the melt
pool geometry and alterations in the melting regime between con-
duction, stable keyhole, and unstable keyhole. Conduction and key-
hole regimes are distinguished via the presence of a depression zone,
with an unstable keyhole considered as the keyhole with a repetitive
depression zone collapse resulting in the formation of keyhole pores12.
An image-based quantification approach was employed on the
acquired X-ray radiographs (x, y, t) to measure the melt pool and
depression zone geometry. Visual analysis reveals that a slight change
in the gray levels occurs when the material is molten, the detection of
which gives the maximum depth and lateral extension in the imaged
plane. In an ideal case (for measurement reproducibility), a fully
automated detection of the melt pool limits based on the acquired
images would be implemented. However, the low signal-to-noise ratio
(SNR) and complex evolutions that are visible—melt pool evolution
and keyholing, thermal strains, porosity formation, and entrapment—
turn this task into a significant image analysis challenge, making a
conventional active contours approach67 unsuitable for the identifi-
cation of the edges of themelt pool due to the low stability throughout
the image set. Furthermore, due to the low SNR, it proved difficult to
pick out the melt pool edges in the visual inspection of a single
radiograph. However, its edges can be identified in its temporal con-
text (i.e., when played as a movie). The developed melt pool quantifi-
cation pipeline was split into multiple steps: time-windowing,

denoising, detectionof a keyhole andmelt pool edges on themelt pool
surface, and annotation of the melt pool boundaries and keyhole
depression.

Time-windowing. Exploiting the fact that the radiographs are
acquired at a constant frame rate and that the lasermoves at a constant
speed, the time series of radiographs has a moving window or ROI
extracted around the laser’s position in each frame. The laser speed in
the coordinate systemof the radiographs ismeasuredwith a line fitted
in the x–t domain using support vector regression. The result is a time
series where the laser appears stationary and the texture of the sample
“flows” past.

Denoising. A median filter (7 × 3 × 3 footprint where the first dimen-
sion is timeand the other two arepixels) is applied to denoise the time-
windowed image. Themedian filter aims at strengthening the signal of
the relatively stationary melt pool against the flowing texture of the
sample. Furthermore, the constant-speed movement of the texture
creates diagonal lines with a fixed slope, which are removed to some
extent with a stripe removal algorithm68.

Detection of the melt pool and keyhole depression edges at the
melt pool surface. The detection of the front and rear boundaries of
the melt pool and keyhole (when present) requires a definition of the
top surface of the sample since it varies both because of the initial
configuration of the sample anddue to the effect of the laser. Given the
very strong contrast between the sample and the non-attenuating top
surface, they are easily separated with an automatic Otsu threshold69.
The pixels at the edge are the surface pixels, which follow the low-
spatial-frequency variations in the surface of the sample. To better
detect the almost-vertical edge of the melt pool and the keyhole
depression (when present) at the top surface, the pointwhere the laser
touches the top surface in each image is used as the origin of a polar
coordinate system. Radial image gradients are calculated for all pixels,
detecting radial changes of gray levels, notably the edge of the melt
pool. The radial gradient image is averaged vertically over 5 pixels from
the identified surface, obtaining a horizontal line average for each time
step, which assembledmakes a 2D image with one axis being time and
the other the surface length in the ROI. This spatiotemporal image (see
Supplementary Fig. 10) shows lines that are slowly changing with time
and that correspond to the edges of the melt pool and depression
zone, respectively; these are manually annotated with an appropriate
tool and converted back into the global coordinate system to yield
front and back positions along the identified moving surface for the
melt pool and keyhole (where present) for each timestep (0.1ms).

Depth annotation. The measurements of the depth of the melt pool
and possible keyhole depression were difficult to automate; thus, it
was decided to implement a live graphical annotation tool (in the form
of a plugin for the Python image viewer Napari70) to allow the time
series to play at a reduced frame rate (10 FPS), allowing for tracking the
point of interest (i.e., the bottom of the melt pool and potential key-
hole depression) with the mouse, the position of which is recorded
automatically frame-by-frame. Furthermore, this annotation can be
converted back to the global coordinate system. Output from image
analysis and annotation, therefore, are time series of points featuring
themelt pool and the depression zone (i.e., melt pool length (lm), melt
pool depth (dm), depression depth (dd), and depression width (wd))
(see Supplementary Fig. 11 in addition to the earlier Fig. 2 and Fig. 3).

Acoustic measurement and signal processing pipeline
Acoustic emission acquisition. A membrane-free optical microphone
(Eta250 Ultra, XARION Laser Products, Austria) was selected as an
acoustic sensor to record airborne acoustic emissions from the laser-
material interaction zone conveyed through the inert atmosphere. The
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microphone uses the principles of interferometry to collect a signal
whose frequency range extends from 10Hz to 1MHz. Precisely, the
core of the microphone consists of an optical interferometer made of
two semi-transmissive mirrors arranged at a distance equal to a mul-
tiple of its laser half wavelength to induce constructive interference of
the transmitted laser beam. Sound waves passing through the micro-
phone’s etalon are measured via their induced density modulation of
air and the resultant alterations in the optical refractive index of the
medium, which in turn influences the laser propagation speed and
wavelength passing through the etalon. Consequently, the distance
between the two mirrors no longer satisfies the condition for con-
structive interference. By employing interferometry, laser intensity
variation and the pressure level representing the sound wave can be
estimated71,72. The XARION microphone was placed in the LPBF
chamber at 100mm from the powder bed right on top of the pro-
cessing zone with its mirrors parallel to the build plate (see Fig. 1b) to
maximize the recipient information from the laser-material interaction
zone72.

Segmentation algorithm. Our approach to segmenting the melting
regimes for LPBF processes is built upon initial empirical observations
of the available data, specifically the time-frequency analysis of the
signals. Through this examination, we were able to identify specific
spectral characteristics that correspond to the conduction and key-
hole regimes. To refine our findings, we first applied signal pre-
processing techniques. As the acoustic data acquisition was manually
triggered shortly before the start of the laser irradiation, we exploited
the high signal-to-noise ratio (SNR) to remove sections of the signal
where the laser is off by simple thresholding. Upon closer examination
of the acoustic amplitude changes at the beginning and end of the
laser scan, it was observed that there is a region of uncertainty span-
ning approximately 100 µs. It is important to note that this uncertainty
aligns with the time resolution of the X-ray imaging, which indicates
that the precise indexing of the stable and unstable keyhole regimes
may have an associated uncertainty of approximately 100 µs. The sig-
nals are then normalized using the RobustScaler algorithm (c.f. Sup-
plementary Method 6).

After pre-processing, we conducted exploratory data analysis
(EDA) on the pre-processed signal spectrograms. Our observations
showed that the majority of the signal energy was concentrated in the

frequency range of 35–105 kHz when the process was in the keyhole
regime—c.f. (Fig. 6). To improve the pipeline’s expressivity, we applied
a digital filter to extract only the relevant frequency range. Addition-
ally, we enhanced the filtered signal by applying a non-linear function
point-wise; the selected non-linear function is PReLU73 which facilitates
the application of the successive smoothing filters by making the sig-
nal running average positive.

Furthermore, we duplicated the filtering pipeline to produce two
signals, each corresponding to a specific regime of interest. The
implementation of two filtering branches offers several benefits,
including increased robustness, a framework that can be easily
expanded to detect multiple regimes, and the ability to discriminate
between the conduction and keyhole regimes by applying the SoftMax
function (c.f. Supplementary Method 3).

However, we recognized that relying solely on these observations
may not deliver the most optimal results for all available signals.
Therefore, to optimize the discriminationof the regimes,we adopted a
data-driven approach to improve the pipeline further. This approach
utilizes annotated data to fine-tune the pipeline, going beyond the
initial time-frequency insights and applying a data-driven filter that
allows one of the two output signals to be more intense when the
corresponding regime is occurring. This fine-tuning allows for a more
accurate and reliable segmentation of the regimes, which is crucial for
real-time/in-situ monitoring of the LPBF/Laser melting process. Spe-
cifically, to guide the filter design optimization, we used a variation of
the cross-entropy loss, which ensures a low score when the pipeline
segmentation matches the ground truth and a high score otherwise.
The ground truth, in this case, refers to the annotated data via X-ray
movies that provide the true labels for each data point, indicating
whether it corresponds to the conduction or keyhole regime. The
pipeline’s parameters are updated using the gradient descent
technique74, with the gradient calculations performed using an auto-
matic differentiation tool such as Pytorch75 (see Supplementary
Method 3).

Unstable keyhole detection. In the previous section, we presented a
regime segmentation technique for the LPBF/Laser melting process
based on the analysis of AE signals. We used a filtering pipeline to
extract specific frequency ranges and a prediction model utilizing the
SoftMax function to discriminate between the conduction and keyhole

Fig. 6 | Time evolution of one AE signal (RM2) annotated based on the X-ray
movies (on the left) and its spectrogramrepresenting the signalpower spectral
density (on the right). The orange signal on the left corresponds to the ground
truth, which has a value of 1 when the keyhole regime is occurring and 0 when the
process regime is conduction. The vertical yellow (red) dotted lines on the right
plot represent the start (end) of the keyhole regime. As can be noticed, most of the

signal energy content is located in the frequency range 35–105 kHz when the cor-
responding regime is keyhole (region highlighted by the horizontal dotted white
lines). To obtain the spectrogram, the AE signal is split into segments of 1024 data
points each, with 512 overlapping data points between consecutive segments. The
Hanning windowing function window is then applied to each segment, and the
spectrum of each section is computed.
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regimes. However, to fully utilize the information provided by the AE
signals, we further optimized the technique by allowing for the dis-
crimination of the unstable keyhole regime from the stable one. This
accomplishment was achieved through minor modifications to the
pipeline, such as adding an additional filtering branch and slight
changes to the loss function. For more information, please refer to the
Supplementary Method 3. The extended capability is crucial for LPBF/
Laser melting processing monitoring, specifically detecting instabil-
ities within the keyhole regime and identifying affected regions for
timely healing measures to save processing time and resources.

Data availability
The representative data that support the findings of this study are
presented in the figures and tables within the main paper, Supple-
mentary Information, and corresponding movies. Additional datasets
that underlie the results of this research are available upon request
from the corresponding author.

Code availability
The code employed for image processing in this study can be accessed
and found at the following public repository: https://gitlab.com/epfl-
center-for-imaging/sti_lmtm_melt_pool_tracking76. The code employed
for the implementation of the segmentation algorithm in this study can
be accessed and found at the following public repository: https://github.
com/GiulioMa/Adaptive-Filter-for-Acoustic-Signal-Segmentation/tree/
main77. Researchers interested in replicating or building upon the
methods used in this study are encouraged to refer to these repositories
for access to the relevant codes.
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